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The flow of a rotating, two-layer fluid system over long ridges of constant cross-section 
is considered. Homogeneous incompressible fluids of constant, but different, density 
are confined between two ‘infinite ’ horizontal plane surfaces which rotate at a constant 
angular velocity about a vertical axis. The ridge is located on the lower surface while 
upstream of the ridge each fluid is in uniform motion in a direction normal to the ridge. 
Solutions are obtained for both anf-plane and a /3-plane under the following restric- 
tions: E Q 1, Ro - E l ,  S - O ( l ) ,  H / L  N 0(1) ,  d / L  - O(1) and h/L - E4 where E is 
the Ekman number, Ro is the Rossby number, 8 is a stratification parameter, H / L  
is the two-fluid depth to ridge width ratio, d / L  is the lower fluid depth to ridge width 
ratio and h/L is the aspect ratio of the ridge. This set of restrictions assures that 
viscosity is important in considering the dynamics of the system. Furthermore the 
restrictions are ones that make laboratory experimentation feasible. Solutions are also 
presented for the non-viscous case (i.e. E = 0), and are compared with their viscous 
counterparts. The importance of viscosity in this physical system is thus demonstrated. 

1. Introduction 
Since Taylor’s (1923) pioneering experiments, much work has been done both 

theoretically and experimentally on the effect of various topographic features on the 
flow of rotating fluids. This work in general has been motivated by possible applications 
to ‘real geophysical situations’ such as atmospheric motions, ocean currents, and such 
matters as Hide’s (1961) hypothesis concerning Jupiter’s great red spot being a Taylor 
column. Much work remains to be done, however. As noted by Huppert (1975), 
‘Taylor’s work has not been extended sufficiently, 80 that we do not yet know the 
solution to the relevant, purely theoretical problem; that is, the form of motion to be 
expected in an arbitrarily stratified, slightly viscous shear flow over prescribed topo- 
graphy in a rapidly rotating system incorporating the ,&effect ’. 

A good summary of the theoretical work done on investigating topographic effects 
in rotating flows (i.e. Taylor columns and related phenomena) is given by McCartney 
(1975). As noted in that paper, theoreticians must in general neglect various parameters 
(e.g. inertia, viscosity, stratification, or the /3-effect) or make restrictive assumptions 
on others (e.g. infinitesimal topographic features) so that a tractable set of governing 
equations can be realized. These restrictions generally limit the usefulness of the results 
in applications to ‘real geophysical flows ’ as well as making laboratory experimentation 
concerning the stated problem, in most cases, difficult, if not impossible. 

In  a series of papers by Boyer (1971 a, b) and Vaziri & Boyer (1971), the flow of a 
single layer fluid on anf-plane was investigated both theoretically and by laboratory 
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FIGURE 1. Physical system. 

experiment for a range of dimensionless parameters for which theory and experiment 
coincided and for which inertia, viscosity, and Coriolis effects were included; the aspect 
ratio of the topographic features was taken as infinitesimal and stratification was not 
considered. This work was later extended to include the /3-effect; Vaziri & Boyer (1977). 
In  all of these studies there was good agreement between the experiments and the 
theory advanced. 

The purpose of the present paper is to extend the earlier work to a two-layer model 
and to provide an analysis which will be applicable for a range of parameters which 
can be examined in the laboratory. In  essence it is an extension of the theoretical 
system considered by McCartney (1975) but includes the effect of viscosity, which is 
an important consideration for laboratory experimentation. We will restrict to the 
flow over a long ridge of constant cross-section because the analytical simplifications 
so made allow for closed-form solutions. 

The physical system to be considered is given in figure 1.  Two layers, each of uniform 
but different density ( p t ,  pg) are confined between two infinite, plane horizontal 
surfaces which are rotating with an angular velocity, wE, about a vertical axis. Each 
layer is taken to be in uniform rectilinear motion with speed Uy and Ug relative to a 
rotating observer. In  $3, the /?-plane situation is discussed; the bounding surfaces are 
then taken as tilted in the north, south ( + y*, - y*) directions. Alow-aspect-ratio ridge 
of profile h(x*) is located on the lower plane surface. The streamwise extent of the 
ridge is given by L, the depth of the lower fluid, by d,  and that of the upper fluid, by 
H - d. It is desired to  determine the resulting flow field. 

For the range of parameters considered, each fluid has an interior geostrophic 
region. Ekman boundary layers exist along the bounding surfaces, as well as in each 
fluid along the interface between the fluids. The lowest-order solution is obtained by 
considering asymptotic expansions of the velocity and pressure fields in EH in each 
of these regions, where E is the Ekman number, and then matching the terms appro- 
priately at  the various boundaries. Inviscid solutions are also obtained to compare 
with the viscous results. 

In  $ 2 solutions for the f-plane are developed. In  $ 3 the analysis is extended to the 
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p-plane with solutions for retrograde (westward) and prograde (eastward) flow being 
discussed. Some concluding remarks are made in Q 4. 

2. f-plane 
Consider each layer of a two-layer flow to be a homogeneous incompressible fluid 

in steady-state motion relative to a rectangular Cartesian co-ordinate system 
Z*(x*,y*,z*) rotating at  an angular velocity w& with respect to an inertial frame; 
see figure 1. The equations of motion are given by 

1 
(8:. V,) v* = - - v*p: - g& - 2w(& x ti?) + vve, 8: (2.1) 

P t  
and 

V*.Ef = 0, 

where i = 1 (lower layer) andi = 2 (upperlayer); V*(u*, w*, w*) is theEulerianvelocity; 
p* the density; p* the pressure; g the acceleration of gravity; and v the kinematic 
viscosity (assumed equal in each layer). For fluids of different viscosities this last 
restriction can easily be relaxed. Relations (2.1) and (2.2) correspond, respectively, 
to conservation of momentum and mass. In order to develop a tractable theory, 
centrifugal effects are neglected a priori. This restriction may cause difficulty in 
applying the theory to laboratory experiments. 

We now introduce the following dimensionless parameters : 

where 

and 

I 

dU,*+(H-d)  27," 
H 

u,* = 

dP: + (H- 4 Pz* 
H Po* = 

are the average free-stream velocity and density, respectively; and where the remaining 
terms are defined in figure 1. Substituting these relations into (2.1) and (2 .2)  yields 

(2.4) 

V.8, = 0 (2.5)  

R0(Ei. V) gi = -YO,,- E x 8i + EV28, 
and 

respectively where Ro = U,*/2wL is the Rossby number and E = v/2wL2 is the Ekman 
number. 

The boundary conditions on (2 .4)  and (2.6) are as follows: 
(i) On the solid bounding surfaces we require no-slip; i.e. 

V,(X,  y ,  h(xL)/L) = 0,  Z2(x, y, H / L )  = 0. 
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and shear stress; i.e. 
(ii) Along the liquid-liquid interface we require continuity of velocity, pressure 

- - -  
Vl = v2, pr = p: ,  E l g  = v2g 

(see (2.3)), where Z is the normal co-ordinate to the interface as shown in figure 1. 
(iii) Far upstream and downstream of the topographic feature and outside the 

Ekman layers on the solid bounding surfaces and the fluid-fluid interface (for the 
range of parameter restrictions discussed below), we require : 

2r1(x+--,y,z)+U1C, ;ii2(z+-00,y,z)-+U2Z", 
- 
V l &  --f 00, Y, 4 + 0, Z2,@ + 00, y, 2) --f 0, 

where Ul = Ur/U," and U2= U,*/U,*. 
The dynamic boundary condition at the interface between the fluids introduces a 

stratification parameter S = gAp*/4dp$ L where Ap* = p: -p: is the density differ- 
ence between layers. The problem as posed is thus a six-parameter one including Ro, 
E ,  S, H/L,  d / L  and h/L, where the last three are geometrical terms defined in figure 1. 

We now consider the following a priori restrictions which are guided by the aim of 
investigating the physical system over a range of parameters which might be examined 
bylaboratoryexperimentation: (i) E < 1; (ii) Ro = kE* where k N O(1); (iii) S - O(1); 
(iv) H / L  N O( 1); (v) d / L  N O( 1); and h(xL)/L - O(E*),  We write the last restriction 
for the topography as 

h(xL)/L = E*ho(x), (2.6) 

where ko(x) N O(1). We also restrict to ho, - O(1); i.e. the topography is smooth. 
Under these restrictions the inertial, Coriolis, topographic, stratification, and viscous 
effects are all important in determining the lowest order motion. 

As noted earlier, we will consider topographic features that are long ridges of con- 
stant cross-section and thus we take the velocity field to be independent of the co- 
ordinate along the ridge axis (i.e. 2ry = 0); note that the reduced pressures, (Dl and (D2, 

will be dependent on y. This leads to a linearization of the inertial terms and thus 
effects a substantial simplification of the analysis. 

Let us first write the governing equations for the lower layer. Considering the de- 
viation from uniform flow to be driven by Ekman layers along the bounding surfaces 
and the fluid-fluid interface, we assume that the dependent variables can be expanded 
in power series in E*; i.e. 

(2.7) 1 
u1 = f0(x, Z )  Eo +ti@, Z) E* + . . . , 
01 = go(", Z) Eo+gl(x, Z) E* + .. ., 
W, = Z0(x, Z) Eo + Z1(x, Z) E* + . . . , 
@1 = mo(x,y, 2) EO+m1(x,y, z )  E*+ ..., 

where fo, . . . , m,, . . . are assumed of order unity and where the leading terms are dictated 
by the order of the free-stream flow. 

Substituting (2.7) into (2.4) and (2.5) one obtains the following zeroth-order 
equations: 

mo, = go, moy = - t o ,  moz = 0, t o z  + 1, = 0 (2.8) 
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respectively. Solving (2.8) subject to the condition ;ii = U,t at x +-a we obtain 

fo = Ul, 90 = go(4, I0 = 0,  mo = - UlY+ god%. (2.9) I 
In order to determine go(x) it is necessary to consider the first-order equations; from 

(2.4), (2.5), (2.7) and (2.9) these are 

m,, = 91, kU1g0, = -m,y-f1, (2.10a, b)  

mu = 0, f,,+ I,, = 0. (2.10c, a)  

Cross-differentiating the (2.10a, b), substituting the resulting value of fix into 
(2 .104  and integrating with respect to z ,  one obtains 

11 = kU,zgo,,+ a(%), (2.11) 

where a(x)  is to be determined. From a consideration of the Ekman layers along the 
lower bounding surface it is then easy to show that the matching condition along z = 0 
for the interior is given by 

(2.12) 

where the first term on the right is the vertical velocity due to the horizontal flow 
being turned by the topographic feature, and the second term is the contribution of 
Ekman suction. Equating (2.11), evaluated at z = 0, with (2.12), one can calculate 
a(z) and thus from (2.11) one obtains 

(2.13) 

This is the lowest-order vertical velocity component in the interior of the lower layer. 
We now consider the interior solution in the upper layer. A power series similar to 

(2.7) is again assumed with a tilde used to designate an upper-layer dependent variable 
(e.g. go is the lowest-order velocity component in the y direction in the upper layer). 
This analysis leads to the following zeroth-order solution (i.e. corresponding to (2.9) 
for the lower layer) 

(2.14) 

where go@) is to be determined. As for the lower layer, the solution for go(x) requires 
a consideration of the firsborder equations. Writing these first-order relations and 
recognizing that the Ekman-boundary-layer matching condition at the upper surface 
is 

* A = U!, go= @&), lo  = 0,  mo = - u 2 Y + ~ @ 0 d x ,  

one obtains the following relation for the lowest-order vertical velocity cgpponent in 
the upper layer 

(2.15) 

To determine go(x) and #o(x), and hence Z,(x,z) and ll(x,z) from (2.13) and (2.15) 
respectively, we must now examine the boundary conditions along the interface 
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between the two fluids. The first condition requires the pressure to be continuous 
across the interface. Setting p r  = p: in (2.3) we obtain 

(2.16) 

where 7 is the displacement of the interface from its non-rotating equilibrium position, 
and where qo is of order unity. Note from the parameter restrictions being considered 
(i.e. Ro - EB and S - O(l)),  that 7 is of order E8; qo is defined by (2.16). 

Having retained the viscosity in the present formulation, the velocity and shear 
stress must also be continuous across the interface. Because the difference in the 
horizontal velocity field in the lower and upper geostrophic regions is in general of 
order unity, and because the elevation of the interface, 7, is of order E+, we assume 
that these velocity and shear stress conditions are satisfied by Ekman boundary 
layers along the interface in each of the fluids, respectively. To investigate these 
layers we introduce a local co-ordinate system (Z, 8,Z) along the interface where it is 
measured along the arc length formed by the intersection of the interface and the 
plane surfaces perpendicular to the y axis; Z is normal to the interface; and is chosen 
in the tangent plane so as to form a right-handed co-ordinate system (see figure 1). 

Consider first the upper interfacial Ekman layer, and introduce the stretched 
boundary-layer co-ordinate [+ = E-42. The lowest-order Ekman-layer equations from 
(2.4) and (2.5) are 

(2.17) I 0 = -&(x)+w2E+uflc+g+, 

0 = U2-UZE+w2Ectf;+, 

U2Ea + w2El; + = O ,  

where the subscript E represents an Ekman-layer variable; where the matching con- 
ditions with the upper layer have been satisfied; and where, with 7 - O(E*),  to lowest 
order 5 = x and 8 = y. 

Solving the first two of (2.17) we obtain 

(2.18) 1 

1 

uZE = Uz+ [A+ cos ([+/,/2) + B+sin ([+/,/2)] e-c+ld2, 

wZE = R ( x )  + [B+ cos (5+/,/2) - A+sin (5+/,/2)] e-ct'd2, 

where A+ and B+ are to be determined. 
A similar calculation for the lower Ekman layer, with [- = - E-82, leads to 

(2.19) 
ulE = U' + [A- cos ([-/,/2) + B-sin ([-/,/2)] e-g-ld2, 
wlE = go@) + [B-cos ([-/,/2) -A-~in([-/,/2)]e-c-'~~, 

where A- and B- also are to be determined. 

between the fluids; i.e. 
We now require that the velocity and shear stress be continuous across the interface 

) (2.20) 
UlE([- = 0) = USE([+ = o), VIE([- = 0) = W2E([+ = o), 

UlEc-([- = 0) = -u&+([+ = o), wlEg-(C- = 0) = -2)2Eg+([+ = 0). 

The integration constants in (2.18) and (2.19) are thus obtained by substituting these 
equations into the interface boundary conditions (2.20). The expression for uZE in 
(2.18) is then substituted into the last of (2.17), the continuity relation for the Ekman 
layer, to determine the vertical velocity component, wZE, in the upper interfacial 
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Ekman layer; similarly turn is determined from the first of (2.19) and the corresponding 
continuity relation for the lower interfacial Ekman layer. We find 

1 
WIE = - - (gos - goz) {I - [COB ([-/d2) 4- Sin (5-/42)] e-‘-/*12}, 

242 

respectively. Letting [+, {- -f 00, we thus note that the interfacial Ekman layers 
pump fluid into (or out of) the interior regions with a magnitude given by 

(2.22) 

The interfacial matching condition for the interior flow in the upper and lower layers 
is thus composed of two parts. The first is the turning of the order one horizontal flow 
so that it is tangent to the interface. The second is the Ekman pumping contribution 
given by (2.22) where we note that, to lowest order, z and 2 are parallel. Using (2.16) 
and (2.22), the upper-layer interior matching condition is thus 

1 
wlE([- 0°) = w2E(ct + 0°) = -- (gOz-gOz)- 

242 

Similarly, for the lower layer 

(2.23) 

(2.24) 

From the last of relations (2.9) and (2.14), r0 is determined from (2.16) as 

70 = ; 1 - P, U,Y +PI/ godx + P2 U2Y - P2 1 goax) .  (2.25) 

Equating (2.13) evaluated at  z = d/L with (2.24) and utilizing (2.25); and equating 
(2.15) evaluated at z = d / L  with (2.23) and again utilizing (2.25), one obtains 

gOZZ + aOgOz + 90  + a2 @OZ + g0 = a4 hOz ,  (2.26a) 

(2.26 b )  

Ul LPl L b -  LPl 
U2(H-d)S’ b2 = - 2J2kU,(H-d)’ ’- ( H - d ) S ’  

b1 = - 3L 
2J2kU,(H -a)’ bo = 

Relations (2.26) are the governing equations for go and go and are to be solved subject 
to the conditions 

(2.27) 

With (2.13) and (2.16) then giving 1, and 1, respectively, the lowest-order solution is 
thus completed. 

1 go@), @ob(x) -f 0 as x+--oo, 
Soz@), #oz(x) -f 0 88 x+ 
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Depending on the choice of h(xL), the coupled equations (2.26) can be solved subject 
to (2.27) in closed form by assuming exponential solutions or by using Fourier trans- 
forms. For complicated h(xL), standard numerical solutions can also be employed. 

One flow field characteristic of note for thef-plane case is that the interior stream- 
lines are shifted laterally a finite distance from their upstream locations. Defining cr 
and d to be the respective shifts in the lower and upper layers we can write 

By solving (2.263) for go and substituting this relation into (2.26a), integrating twice 
from x = - ot, to x = +a, and then using (2.27), it  can be shown that 

(2.29) 

Thus, tho rather unexpected result that the streamline shift is the same for both layers. 
As in the earlier work of the writer (Boyer 1 9 7 1 ~ )  the shift depends on the Ekman 
number (i.e. h, depends on E ) ,  but is again independent of the Rossby number. 
Presumably an analysis such as that given by Huppert & Stern (1974) for a channel 
with side walls would again give a dependence on Ro for the maximum streamline 
deflection. 

To obtain a specific solution we consider the flow over a smooth symmetric ridge 
and assign values to the dimensionless parameters which might make laboratory 
experimentation feasible, In  particular we define UF = U,* = U,* = 0.2 cm s-l; 
H = 6-08 cm; d = 2.54 cm; L = 5.08 cm; h = 0.254 cm; w = 1 rad s-l; p: = 1.01 gm 
cm-S;pt = 1.00gmcm-S;v = 0.01 cm2 s-1;andg = 981 cm s-2.ThesegiveEt = 0,014, 
Ro = 0.020, S = 0.48, H / L  = 1.0, dlL = 0.5 and h/L = 0.05. We take the ridge 
topography in dimensionless form to be given by 

hO(x) = 3.57 C O S ~ ~ X ,  - 0.5 < x < 0.5. 

The solution of (2.26) subject to (2.27) for go and &, can now be found in closed form 
in a straightforward way. The streamlines in the lower and upper layers are then 
given by 

1 ”  
y = - 1 g, (x)dx ,  y” = ’$” go(x)dx u, -co u2 --m 

respectively. The resulting horizontal streamline patterns for the lower and upper 
geostrophic regions are given in figure 2. 

The qualitative aspects of the flow fields are similar to those obtained by Boyer 
(1971a) for the single-layer case. That is, in both layers the flow drifts to the right, 
facing downstream in the vicinity of the ridge and then returns to the same direction 
as the upstream flow, but shifted to the right, as discussed above, While the ridge had 
no effect on the upstream flow in the single-layer case, here the streamlines in both 
layers have some curvature upstream of the ridge. 

In  order to compare these ‘viscous ’ results with those for the case in which viscosity 
is neglected (e.g. McCartney’s analysis), an inviscid solution for the present problem 
was obtained. In the inviscid analysis the Ekman number, E ,  in (2.4) is identically 
zero. Solutions for the geostrophic regions are obtained by expanding the dependent 

. 
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FIQURE 2. Streamline pattern for a cosine-squared ridge on an f-plane; Ro = 0.020, E = 1.94 x 
10-4, S = 0.48, H / L  = 1.0, d / L  = 0.5 and h/L = 0.05. The free-stream velocity in each layer 
is the same; i.e. UJU2 = 1.0. Note, in the inviscid case E = 0. 

variables in power series in the Rossby number, Ro. The matching conditions at the 
bounding surfaces are simply that the vertical velocity is zero along the top and is 
given by RoU, hoz along the bottom. 

With zero viscosity, Ekman layers, of course, do not occur along the interface 
between the fluids. The boundary conditions along this interface are that the pressure 
is continuous (dynamic condition) and that the flow in each fluid layer is tangent to 
the interface (kinematic condition). The non-viscous analysis proceeds in a fashion 
almost identical to that given for the viscous case and is not repeated here. The 
resulting governing equations for the velocity components along the ridge are given- 

g 0 z z + a 1 g 0 + a 3 0 0  = a4h0z, 00zz+b1#0++b3g0 = O ,  (2.30) 
by 

where now 

and where ho(z) = (h(xL)/L)/Ro. The solution of (2.30) is straightforward and for the 
same dimensional parameters (with Y = 0 )  and ridge shape as given above gives the 
streamline pattern plotted in figure 2. 

Hence, we see that in the inviscid case far downstream of the topography the velocity 
component parallel to the ridge is non-zero; the downstream flow direction thus 
differs from that upstream. From (2.30) it is easily shown that the downstream 
direction of the streamlines in each layer is given by 

(2.31) 
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where a is the angle between the upstream and downstream streamlines (measured 
to the right facing downstream). Thus, we see that the effect of viscosity is to decay 
the relative vorticity generated by the topography and to return the streamlines to 
their original directions. 

3. Beta-plane 
In-many applications to oceanographic or atmospheric motions the horizontal scale 

of the region in question is so large that the vertical component of the Earth’s rotation 
varies substantially throughout the region. In such cases it has become customary to 
write the vertical component of the Earth’s rotation as a Taylor series about the 
latitude of the central portion of the region being considered. The first term in such 
an expansion is called the 8-term. 

For single-layer studies it is possible to show that the 8-eEect can be simulated in 
the laboratory by simply tilting the fluid container from north to south with the 
‘thin’ portion being toward the north; for example, see Greenspan (1968) and Vaziri 
k Boyer (1977) .  The latter study includes a solution for the flow of a single-layer 
fluid over a long ridge on a ,+plane. A laboratory run is presented which is in good 
agreement with the theory. The question here is whether a tilting of the flow channel 
can simulate the 8-effect for the two-layer case. 

In  examining this question we replace 2Tj in relation (2 .1 )  by 

2G = (2w0+/3y)L, ( 3 . 1 )  

where in the simulation process, 2 0 ,  is to represent twice the vertical component of 
the Earth’s rotation rate at  some central latitude; i.e. 2 R  sin $o where Q is the Earth’s 
rotation rate and $o is the latitude. The term 8 represents the first term in the Taylor 
expansion and is given by 2 R  cos $,/R where R is the Earth’s radius and y is the co- 
ordinate measured toward the north. 

If we now carry out the same non-dimensionalization as in (2 .3 )  we find the Coriolis 
term in (2 .4 )  is given by 

Coriolis term = 1 +- y (f x VJ. ( g o )  
Thus, we have introduced a new dimensionless parameter /3L/2w0. We take this 
quantity as being O(E*) by setting 

where 8, is assumed of order unity. This assumption is a reasonable one for large scale 
geophysical motions. 

The 8-plane analysis is similar to that for thef-plane, i.e. beginning with the depen- 
dent variable series expansions of (2 .7 )  one is again led to the governing equations 
(2 .26) .  In the p-analysis the coefficients following (2 .26 )  are the same as for the f-plane 
case with the exceptions that a, and b, are replaced by 

respectively. Because a, and b, are the coefficients of go and @, respectively in (2.26) 
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FIGURE 3. Streamline pattern for retrograde (westward) flow over a cosine-squared ridge on a 
B-plane; Ro = 0.020, E = 1 . 9 4 ~  10-4, 8 = 0.48, Po = 9-99 (inviscid), Po = 14.28 (viscous), 
H / L  = 1.0, d / L  = 0.5 and h/L  = 0.05. The free-stream velocity in each layer is the same; 
i.e. u,/U, = 1.0. Note, in the inviscid case E = 0. 

it  is then an easy matter to show that given a /3 and hence a Po the first terms on the 
right-hand sides of (3.2) can be simulated respectively in the laboratory by sloping 
the lower and upper surfaces in the 'north-south' direction according to 

I n  summary the viscous /%plane analysis leads to the governing equations (2.26a, b) 
but with the coefficients a, and a, in this case being given by 

The remaining coefficients a,, u2, a,, a4, b,, b, and b, are the same as those following 
(2.26), respectively. Given /? and the upper and lower layer fluid depths, the surface 
slopes are found from (3.3), where we recall from (2.6) that h,(x, y) = h(xL, yL)/(LEb). 

The inviscid differential equations for the P-plane case are the same as those for 
thef-plane (i.e. (2.30)) with the exception that the coefficients a, and b, are now given 
by 

respectively, where Po = (/3L)/(2wRo) and where the topography function is given by 

In simulating the p-effect the Po term in a, and b, in relations (3.5) must again be 
replaced by the relations (3.3) respectively, now using the height function defined in 
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(3.6). In summary, the inviscid 8-analysis leads to the governing equations (2.30) with 
the coefficients a, and b, given by 

respectively, and a,, u4 and b, given by those relations following (2.30). Given a /? 
and the upper and lower fluid depths, the surface slopes are determined from (3.3) 
and (3.6).  The velocity field is then determined from (2.30) using the coefficients noted 
above. 

Viscous and inviscid solutions for both retrograde (westward) and prograde (east- 
ward) flow were obtained for the cosine squared ridge discussed above using the same 
parameters as for the f-plane case and in addition taking 8 = 0.079 cm-l s-l. Solutions 
for retrograde flow are given in figure 3. The streamline pattern for both the viscous 
and inviscid cases is confined to small excursions from the uniform flow. Because of 
the small relative vorticity generated by the topography, viscous effects are relatively 
unimportant in determining the velocity field; in fact for the parameters considered 
the streamline patterns are indistinguishable. The observations from figure 3 of rela- 
tively small streamline deflections in both layers, with essentially no topographic 
effect in the upper layer are in consonance with McCartney’s (1975) inviscid results 
for flow past a truncated cylinder. 

Solutions €or both the viscous and inviscid cases for prograde (eastward) flow are 
plotted in figure 4. In  view of the large relative viscosity generated in both layers by 
the ridge we note the importance of including viscosity in the analysis. We also note 
that in the vicinity of the upstream portion of the ridge that the viscous and inviscid 
solutions are similar. The results, however, diverge dramatically downstream of the 
ridge. Viscosity damps out the motion within several ridge diameters while in the 
inviscid case oscillations in the flow established by the ridge continue indefinitely 
downstream. It is also noted that the streamline pattern in the lower layer is quali- 
tatively similar to that given by Vaziri & Boyer (1977) for prograde flow in a single 
layer 8-plane laboratory experiment. The experimental parameters were similar, but 
not identical with the values used in the theoretical solution above. 

Solutions for an f-plane and 8-plane were also obtained for an ‘exponential ridge’ 
whose amplitude and cross-sectional area were identical with the cosine-squared ridge 
above; i.e. the topographic function used was 

ho(z) = 3-57 e-1257xa, -a < x < a, 
where the horizontal dimension was taken as the width at  which the ridge height was 
0.043 of the maximum height. The horizontal flow fields so obtained for the same 
parameters used above were indistinguishable from those results given in figures 2, 3 
and 4 for the cosine-squared ridge. Thus the flow field is relatively insensitive to the 
details of the ridge profile. 

The analysis leading to (2.26) is restricted to ridges with continuous slopes. It is 
noted, however, that solutions were also obtained for topographic features with 
continuous h, but discontinuous hoz; in particular, a ridge of triangular cross-section. 
In  this analysis the height and cross-sectional areas of the triangular ridge were the 
same as those of the cosine-squared and exponential ridges described above. The 
horizontal flow patterns for both the f- and p-planes so obtained were again virtually 
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FIGURE 4. Streamline pattern for prograde (eastward) flow over a cosine-squared ridge on EL 

B-plane; Ro = 0.020, E = 1 . 9 4 ~  lo4, 8 = 0.48, Po = 14.28 (viscous), H / L  = 1.0, d / L  = 0.5 
and h/L = 0.06. The free-stream velocity in each layer is the same; i.e. UJU, = 1.0. Note, 
in the inviscid case E = 0. 

identical to those given in figures 2, 3 and 4. So again we find that major features of 
the flow fields are relatively insensitive to the details of the topographic feature. In  
addition, it appears the analysis can be extended to a reasonable approximation to 
features with continuous h,, but discontinuous hoz. 

4. Summary and conclusions 
A theory has been developed for both the viscous and inviscid flow of two immiscible 

fluids over long shallow ridges in a rotating system. In the viscous theory the flow field 
consists of geostrophic regions in each fluid layer with Ekman boundary layers occur- 
ring along the bounding surfaces. The theory also incorporates Ekman layers in each 
fluid along the interface between the two fluids. 

For the f-plane case the inviscid solution shows that downstream of the ridge the 
streamlines are a t  an angle to the right, facing downstream, of their upstream direc- 
tions, a result reminiscent of that given by Batchelor (1970) for a single-layer system. 
The inclusion of viscosity in thef-plane leads to a flow in which the downstream stream- 
lines are in the same direction as those upstream, but are shifted a finite distance to 
the right, facing downstream. This latter result is reminiscent, say for the lower layer, 
of the one-layer experimental results given by Boyer (1971 a) .  

In  the 8-plane analysis it is shown that for + two-layer flow the 8-effect can be 
simulated by appropriately tilting the upper and lower surfaces. For retrograde flow 
on a 8-plane the streamline deflections in both layers are small relative to those for 
the prograde case. Downstream of the ridge the streamlines return to their upstream 
positions and directions. Because of the small relative vorticity generated by the 
ridge, Ekman suction a t  the bounding surfaces and the interface has little effect on 
the streamline patterns. 

For prograde flow the viscous case leads to large damped oscillatory waves in the 
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streamline patterns of each layer. The lower-layer solution is qualitatively similar to 
the single-layer laboratory results conducted by Vaziri 6 Boyer (1977). The inviscid 
prograde case leads to large undamped oscillations in the streamline patterns in both 
layers downstream of the ridge. 

The horizontal streamline patterns are found to be relatively insensitive to the 
details of the ridge shape for ridges with equal amplitude and cross-sectional areas. 
Furthermore it appears these streamline patterns can be satisfactorily determined for 
ridges with discontinuous slope even though the theory is strictly valid only for 
continuous slope cases. 
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